Forecasting Harga Komoditi Pokok Jambu Mete di Sumba Barat Daya dengan Menggunakan Metode Supervised Machine
DOI:
https://doi.org/10.53863/kst.v5i02.927Kata Kunci:
Cashew, Commodities, Machine Learning, ForecastingAbstrak
Cashew (Anacardium Occidentale L) is one of the plantation crop commodities which has economic significance and quite potential because its production can be used as raw material for the food industry. According to the Big Indonesian Dictionary (KBBI), commodities are raw materials for agricultural products, merchandise, primary goods and local crafts that can be used as export commodities, such as wheat, curry, coffee, etc. Southwest Sumba Regency is one of the places where cashew is produced to increase farmers' income, but the potential of the cashew crop must be balanced with the right price. Many researchers carry out forecasting using various methods, but in this research, the technique used is supervised learning, namely linear regression, which has a relatively high level of accuracy. This research uses the Linear Regression method to produce accurate price forecasts and to know the influence of future rises and falls in cashew prices in the Southwest Sumba district. The forecasting results in this research were Rp. 14,272/Kg with an RMSE value of 0.794.
Keywords: Cashew, Commodities, Machine Learning, Forecasting
Referensi
Barner-Rasmussen, W., Ehrnrooth, M., Koveshnikov, A., & Mäkelä, K. (2014). Cultural and language skills as resources for boundary spanning within the MNC. Journal of International Business Studies, 45, 886–905.
Coelho, L. P., Richert, W., & Brucher, M. (2018). Building Machine Learning Systems with Python: Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow. Packt Publishing Ltd.
Data, P. (1907). Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian. 2016. Outlook Kelapa Sawit Komoditas Pertanian Subsektor Perkebunan.
Fitriani, F., Rusgiyono, A., & Wuryandari, T. (2013). Perhitungan dan Analisis Produk Domestik Regional Bruto (PDRB) Kabupaten/kota Berdasarkan Harga Konstan (Studi Kasus BPS Kabupaten Kendal). Jurnal Gaussian, 2(2), 109–118. https://doi.org/https://doi.org/10.14710/j.gauss.2.2.109%20-%20118
Gani, I. M., & Saputri, M. E. (2015). Analisis Peramalan dan Pengendalian Persediaan Bahan Baku dengan Metode EOQ pada Optimalisasi Kayu di Perusahaan Purezento. EProceedings of Management, 2(2).
Geetha, A., & Nasira, G. M. (2014a). Artificial Neural Networks’ application in weather forecasting–using RapidMiner. International Journal of Computational Intelligence and Informatics, 4(3), 177–182.
Geetha, A., & Nasira, G. M. (2014b). Data mining for meteorological applications: Decision trees for modeling rainfall prediction. 2014 IEEE International Conference on Computational Intelligence and Computing Research, 1–4.
Geron, Y., Benbassat, C., Shteinshneider, M., Or, K., Markus, E., Hirsch, D., Levy, S., Ziv-Baran, T., & Muallem-Kalmovich, L. (2019). Multifocality is not an independent prognostic factor in papillary thyroid cancer: a propensity score–matching analysis. Thyroid, 29(4), 513–522.
Herdhiansyah, D., & Asriani. (2018). Strategi Pengembangan Agroindustri Komoditas Kakao di Kabupaten Kolaka–Sulawesi Tenggara Agroindustry Development Strategy of Cocoa Commodity in Kolaka Regency-Southeast Sulawesi. Jurnal Agroindustri Halal, 4(1), 030–041. https://doi.org/https://doi.org/10.30997/jah.v4i1.1124
Mulyaningsih, A., Hubeis, A. V. S., & Sadono, D. (2018). Partisipasi petani pada usahatani padi, jagung, dan kedelai perspektif gender. Jurnal Penyuluhan, 14(1), 145–158. https://doi.org/10.25015/penyuluhan.v14i1.18546
Murniati, M., & Takandjandji, M. (2015). Tingkat Pemanfaatan Tumbuhan Penghasil Warna pada Usaha Tenun Ikat di Kabupaten Sumba Timur. Jurnal Penelitian Hutan Tanaman, 12(3), 223–237. https://doi.org/https://doi.org/10.20886/jpht.2015.12.3.223-237
Rizqiani, F. (2022). Analisis Peramalan Produksi Dan Harga Jambu Mete Di Provinsi Nusa Tenggara Bara. Universitas Mataram.
Savitri, N. L. P. C., Rahman, R. A., Venyutzky, R., & Rakhmawati, N. A. (2021). Analisis klasifikasi sentimen terhadap sekolah daring pada twitter menggunakan Supervised Machine Learning. Jurnal Teknik Informatika Dan Sistem Informasi, 7(1). https://doi.org/https://doi.org/10.28932/jutisi.v7i1.3216
Soedireja, H. R. (2016). Potensi dan upaya pemanfaatan air tanah untuk irigasi lahan kering di Nusa Tenggara. Jurnal Irigasi, 11(2), 67–80.
Sofyan, S. (1980). Peranan Tanaman Jambu Mete (Anacardium occidentale Linn) dalam Usaha Pelestarian Hidup dan Peningkatan Manfaat Hasil Pertanian. Agritech: Jurnal Fakultas Teknologi Pertanian UGM, 1(3), 29–33. https://doi.org/https://dx.doi.org/10.22146/agritech.22235
Sudipa, N. (2021). Status Daya Dukung Lahan untuk Keberlanjutan Pangan di Kabupaten Klungkung. Jurnal Ilmu Pertanian Indonesia, 26(4), 597–604. https://doi.org/https://doi.org/10.18343/jipi.26.4.597
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Yotan Hendra Huan,Andry Ananda Putra Tanggu Mara,Titus Kurra
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal