Forecasting Harga Komoditi Pokok Jambu Mete di Sumba Barat Daya dengan Menggunakan Metode Supervised Machine

Authors

  • Yotan Hendra Huan Program Studi Teknik Informatika, STIMIKOM Stella Maris Sumba, Indonesia
  • Andry Ananda Putra Tanggu Mara Program Studi Teknik Informatika, STIMIKOM Stella Maris Sumba, Indonesia
  • Titus Kurra Program Studi Teknik Informatika, STIMIKOM Stella Maris Sumba, Indonesia

DOI:

https://doi.org/10.53863/kst.v5i02.927

Keywords:

Cashew, Commodities, Machine Learning, Forecasting

Abstract

Cashew (Anacardium Occidentale L) is one of the plantation crop commodities which has economic significance and quite potential because its production can be used as raw material for the food industry. According to the Big Indonesian Dictionary (KBBI), commodities are raw materials for agricultural products, merchandise, primary goods and local crafts that can be used as export commodities, such as wheat, curry, coffee, etc. Southwest Sumba Regency is one of the places where cashew is produced to increase farmers' income, but the potential of the cashew crop must be balanced with the right price. Many researchers carry out forecasting using various methods, but in this research, the technique used is supervised learning, namely linear regression, which has a relatively high level of accuracy. This research uses the Linear Regression method to produce accurate price forecasts and to know the influence of future rises and falls in cashew prices in the Southwest Sumba district. The forecasting results in this research were Rp. 14,272/Kg with an RMSE value of 0.794.

Keywords: Cashew, Commodities, Machine Learning, Forecasting

References

Barner-Rasmussen, W., Ehrnrooth, M., Koveshnikov, A., & Mäkelä, K. (2014). Cultural and language skills as resources for boundary spanning within the MNC. Journal of International Business Studies, 45, 886–905.

Coelho, L. P., Richert, W., & Brucher, M. (2018). Building Machine Learning Systems with Python: Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow. Packt Publishing Ltd.

Data, P. (1907). Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian. 2016. Outlook Kelapa Sawit Komoditas Pertanian Subsektor Perkebunan.

Fitriani, F., Rusgiyono, A., & Wuryandari, T. (2013). Perhitungan dan Analisis Produk Domestik Regional Bruto (PDRB) Kabupaten/kota Berdasarkan Harga Konstan (Studi Kasus BPS Kabupaten Kendal). Jurnal Gaussian, 2(2), 109–118. https://doi.org/https://doi.org/10.14710/j.gauss.2.2.109%20-%20118

Gani, I. M., & Saputri, M. E. (2015). Analisis Peramalan dan Pengendalian Persediaan Bahan Baku dengan Metode EOQ pada Optimalisasi Kayu di Perusahaan Purezento. EProceedings of Management, 2(2).

Geetha, A., & Nasira, G. M. (2014a). Artificial Neural Networks’ application in weather forecasting–using RapidMiner. International Journal of Computational Intelligence and Informatics, 4(3), 177–182.

Geetha, A., & Nasira, G. M. (2014b). Data mining for meteorological applications: Decision trees for modeling rainfall prediction. 2014 IEEE International Conference on Computational Intelligence and Computing Research, 1–4.

Geron, Y., Benbassat, C., Shteinshneider, M., Or, K., Markus, E., Hirsch, D., Levy, S., Ziv-Baran, T., & Muallem-Kalmovich, L. (2019). Multifocality is not an independent prognostic factor in papillary thyroid cancer: a propensity score–matching analysis. Thyroid, 29(4), 513–522.

Herdhiansyah, D., & Asriani. (2018). Strategi Pengembangan Agroindustri Komoditas Kakao di Kabupaten Kolaka–Sulawesi Tenggara Agroindustry Development Strategy of Cocoa Commodity in Kolaka Regency-Southeast Sulawesi. Jurnal Agroindustri Halal, 4(1), 030–041. https://doi.org/https://doi.org/10.30997/jah.v4i1.1124

Mulyaningsih, A., Hubeis, A. V. S., & Sadono, D. (2018). Partisipasi petani pada usahatani padi, jagung, dan kedelai perspektif gender. Jurnal Penyuluhan, 14(1), 145–158. https://doi.org/10.25015/penyuluhan.v14i1.18546

Murniati, M., & Takandjandji, M. (2015). Tingkat Pemanfaatan Tumbuhan Penghasil Warna pada Usaha Tenun Ikat di Kabupaten Sumba Timur. Jurnal Penelitian Hutan Tanaman, 12(3), 223–237. https://doi.org/https://doi.org/10.20886/jpht.2015.12.3.223-237

Rizqiani, F. (2022). Analisis Peramalan Produksi Dan Harga Jambu Mete Di Provinsi Nusa Tenggara Bara. Universitas Mataram.

Savitri, N. L. P. C., Rahman, R. A., Venyutzky, R., & Rakhmawati, N. A. (2021). Analisis klasifikasi sentimen terhadap sekolah daring pada twitter menggunakan Supervised Machine Learning. Jurnal Teknik Informatika Dan Sistem Informasi, 7(1). https://doi.org/https://doi.org/10.28932/jutisi.v7i1.3216

Soedireja, H. R. (2016). Potensi dan upaya pemanfaatan air tanah untuk irigasi lahan kering di Nusa Tenggara. Jurnal Irigasi, 11(2), 67–80.

Sofyan, S. (1980). Peranan Tanaman Jambu Mete (Anacardium occidentale Linn) dalam Usaha Pelestarian Hidup dan Peningkatan Manfaat Hasil Pertanian. Agritech: Jurnal Fakultas Teknologi Pertanian UGM, 1(3), 29–33. https://doi.org/https://dx.doi.org/10.22146/agritech.22235

Sudipa, N. (2021). Status Daya Dukung Lahan untuk Keberlanjutan Pangan di Kabupaten Klungkung. Jurnal Ilmu Pertanian Indonesia, 26(4), 597–604. https://doi.org/https://doi.org/10.18343/jipi.26.4.597

Published

2023-09-18

How to Cite

Huan, Y. H., Mara, A. A. P. T., & Kurra, T. (2023). Forecasting Harga Komoditi Pokok Jambu Mete di Sumba Barat Daya dengan Menggunakan Metode Supervised Machine. JURNAL KRIDATAMA SAINS DAN TEKNOLOGI, 5(02), 255–265. https://doi.org/10.53863/kst.v5i02.927

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.