Pengembangan Modul Pembelajaran Berbasis Sensor Inertial Measurement Unit (IMU) untuk Meningkatkan Keterampilan Teknik Tendangan Sepak Bola Mahasiswa Pendidikan Jasmani
DOI:
https://doi.org/10.53863/kst.v7i02.1953Kata Kunci:
sensor IMU, pembelajaran sepak bola, teknik tendangan, pedagogi olahraga, teknologi PendidikanAbstrak
Perkembangan teknologi sensor dalam dunia pendidikan olahraga membuka peluang baru untuk meningkatkan kualitas pembelajaran teknik keterampilan motorik. Penelitian ini bertujuan mengembangkan modul pembelajaran berbasis sensor Inertial Measurement Unit (IMU) untuk meningkatkan keterampilan teknik tendangan sepak bola pada mahasiswa Pendidikan Jasmani. Penelitian ini menggunakan metode Research and Development (R&D) dengan model ADDIE (Analysis, Design, Development, Implementation, Evaluation) yang dilaksanakan pada bulan Januari sampai Maret 2025 di Program Studi Pendidikan Olahraga Universitas Ma'arif Nahdlatul Ulama Kebumen. Subjek penelitian terdiri dari 40 mahasiswa semester 4 yang mengambil mata kuliah Sepak Bola, dibagi menjadi kelompok eksperimen (n=20) dan kelompok kontrol (n=20). Instrumen penelitian meliputi sensor IMU MPU-6050, aplikasi mobile berbasis Android untuk visualisasi data, rubrik penilaian teknik tendangan, dan kuesioner respon pengguna. Teknik analisis data menggunakan uji-t berpasangan dan uji-t independen untuk membandingkan peningkatan keterampilan, serta analisis deskriptif untuk respon pengguna. Hasil penelitian menunjukkan bahwa modul pembelajaran berbasis sensor IMU efektif meningkatkan keterampilan teknik tendangan sepak bola mahasiswa. Kelompok eksperimen mengalami peningkatan skor rata-rata dari 65,4 menjadi 82,7 (p<0,001), sedangkan kelompok kontrol meningkat dari 64,8 menjadi 71,3 (p<0,05). Terdapat perbedaan signifikan antara kelompok eksperimen dan kontrol pada post-test (p<0,001) dengan effect size Cohen's d=2,18 (kategori sangat besar). Validasi ahli menunjukkan modul pembelajaran memperoleh skor 4,6 dari 5,0 (kategori sangat layak). Respon mahasiswa menunjukkan tingkat kepuasan 89,2% dengan kategori sangat puas.
Referensi
Banville, D., Erwin, H., Kubik, M., Timken, G., & Mercier, K. (2021). Physical education in a pandemic: A case study of a university teacher education programme. Physical Education and Sport Pedagogy, 27(6), 630-645.
Blair, S., Duthie, G., Robertson, S., Hopkins, W., & Ball, K. (2019). Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. Journal of Biomechanics, 73, 24-32.
Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 873.
Dick, W., Carey, L., & Carey, J. O. (2015). The systematic design of instruction (8th ed.). Pearson.
Dong, X. (2023). Construction of sports education performance evaluation model using machine learning algorithm. Soft Computing, 27(11), 7313-7326.
Dörge, H. C., Andersen, T. B., Sørensen, H., & Simonsen, E. B. (2002). Biomechanical differences in soccer kicking with the preferred and the non-preferred leg. Journal of Sports Sciences, 20(4), 293-299.
Fuss, F. K., Düking, P., & Weizman, Y. (2018). Discovery of a sweet spot on the foot with a smart wearable soccer boot sensor that maximizes the chances of scoring a curved kick in soccer. Frontiers in Physiology, 9, 63.
García-Ceberino, J. M., Antúnez, A., Ibáñez, S. J., & Feu, S. (2020). Design and validation of the instrument for the measurement of learning and performance in football. International Journal of Environmental Research and Public Health, 17(13), 4629.
Guo, J. (2024). Construction of teaching framework for innovation in sports education based on machine learning and artificial intelligence. Soft Computing, 28(2), 1287-1299.
Horenstein, R. E., Goudeau, Y. R., Lewis, C. L., & Shefelbine, S. J. (2020). Using magneto-inertial measurement units to pervasively measure hip joint motion during sports. Sensors, 20(17), 4970.
Kellis, E., & Katis, A. (2007). Biomechanical characteristics and determinants of instep soccer kick. Journal of Sports Science and Medicine, 6(2), 154-165.
Magill, R. A., & Anderson, D. I. (2017). Motor learning and control: Concepts and applications (11th ed.). McGraw-Hill Education.
Meng, Y. (2021). Virtual reality technology-based safety education for university physical education courses. Mathematical Problems in Engineering, 2021, 1-12.
Mitchell, E., Monaghan, D., & O'Connor, N. E. (2013). Classification of sporting activities using smartphone accelerometers. Sensors, 13(4), 5317-5337.
Moreno-Guerrero, A. J., Rodríguez-Jiménez, C., Gómez-García, G., & Ramos Navas-Parejo, M. (2020). Educational innovation in higher education: Use of role playing and educational video in future teachers' training. Sustainability, 12(6), 2558.
Omarov, B., Omarov, B., Kisselyova, A., Kussainova, S., Doszhanova, A., & Mukhametzhanova, A. (2024). Augmented reality mobile game application with game-based learning method to increase physical activity among students. Education and Information Technologies, 29(5), 5845-5866.
Schmidt, R. A., & Lee, T. D. (2019). Motor learning and performance: From principles to application (6th ed.). Human Kinetics.
Shan, G., & Westerhoff, P. (2005). Full-body kinematic characteristics of the maximal instep soccer kick by male soccer players and parameters related to kick quality. Sports Biomechanics, 4(1), 59-72.
Waldron, M., Highton, J., Daniels, M., & Twist, C. (2021). Preliminary reliability and validity of a novel wearable sensor for quantifying soccer-specific actions. Journal of Sports Sciences, 39(15), 1730-1737.
Wilmes, E., De Ruiter, C. J., Bastiaansen, B. J., Van Zon, J. F., Vegter, R. J., Brink, M. S., Goedhart, E. A., Lemmink, K. A., & Savelsbergh, G. J. (2020). Inertial sensor-based motion tracking in football with movement intensity quantification. Sensors, 20(9), 2527.
Xiao, W., Lu, Y., Gong, C., Hu, X., & Dou, W. (2020). Internet-based intelligent sports wristband for monitoring heart rate changes. Measurement and Control, 53(7-8), 1476-1484.
Zhou, L., Tunca, C., Fischer, E., Brahms, M., Ersoy, C., Granacher, U., & Arnrich, B. (2020). Validation of an IMU gait analysis algorithm for gait monitoring in daily life situations. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 4229-4232.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Yogi Ferdy Irawan

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal
















