Extreme Gradient Boosting pada Peramalan Pola Curah Hujan Bulanan Kabupaten Banyuwangi
DOI:
https://doi.org/10.53863/kst.v6i02.1154Kata Kunci:
Curah Hujan, Peramalan, Ensemble Learning, XGBoost, BanyuwangiAbstrak
Data meteorologi jangka panjang sangat berguna untuk mengidentifikasi tanda-tanda fenomena perubahan iklim. Fenomena tersebut mengacu pada perubahan jangka panjang kondisi fisik atmosfer bumi seperti suhu dan pola cuaca. Hal tersebut berdampat sangat besar, terutama di Banyuwangi yang merupakan salah satu wilayah produksi beras terbesar di Jawa Timur. Memprediksi tren curah hujan bulanan penting untuk mengantisipasi kegagalan panen akibat cuaca ekstrem dan bencana alam seperti banjir dan tanah longsor. Penelitian ini menggunakan parameter cuaca pada skala global seperti suhu, hujan, penguapan, kelembaban permukaan dan tekanan permukaan laut, sedangkan untuk informasi skala lokal menggunakan data curah hujan bulanan di wilayah Banyuwangi pada tahun 2011 hingga 2023. Metode Extreme Gradient Boosting (XGBoost) akan digunakan untuk memprediksi curah hujan bulanan dalam model ensemble learning berbasis pendekatan boosting. Secara khusus, studi ini menekankan kemampuannya untuk membangun model prediktif pada data deret waktu yang terbatas dan dampak pemisahan data terhadap performa model. Hasil terbaik ditunjukkan oleh model dengan rasio pemisahan data 1:12 atau mencakup 80% data sebagai data pelatihan. Akurasi model mencapai MAE sebesar 72.579 mm pada pelatihan dan 80.777 mm pada pengujian. Selain itu RMSE sebesar 95.940 mm pada pelatihan dan 95.775 mm pada pengujian. Hasil penelitian ini diharapkan dapat menjadi acuan untuk membangun model peramalan cuaca jangka panjang yang lebih optimal.
Referensi
Bagirov, A.M., Mahmood, A., & Barton, A. (2017). Prediction of monthly rainfall in Victoria, Australia: clusterwise linear regressionapproach. Atmospheric Research ,188,20-29. https://doi.org/10.1016/j.atmosres.2017.01.003
BMKG Banyuwangi. (2024). [Web application]. https://www.bmkg.go.id/tag/?tag=stasiun-meteorologi-banyuwangi&lang=ID
bmkg-sebut-fenomena-iklim-di-indonesia-kian-tak-pasti-dan-cepat-berubah-ini-sebabnya
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable Tree Boosting System. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785
Gu, J., Liu, S., Zhou,Z., Chalov, S.R., & Zhuang, Q. (2022). A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China [Special section]. Water, 14(3), 492.
He, R., Zhang, L., & Chew, A.W.Z. (2024). Data-driven multi-step prediction and analysis of monthly rainfall using explainable deep learning. Expert Systems with Applications, 235(121160). https://doi.org/10.1016/j.eswa.2023.121160
Helmi, I. (2022, Maret 23). BMKG Sebut Fenomena Iklim di Indonesia Kian Tak Pasti dan Cepat Berubah, Ini Sebabnya. Kompas TV. https://www.kompas.tv/nasional/273138/
Jhonson, R.A. & Wichern, D.W. (2007). Applied multivariate statistical analysis. Pearson Prentice Hill.
KNMI climate explorer. (2022). [Web application]. https://climexp.knmi.nl/start.cgi?id=
Latif, S.D., Hazrin, N.A.B., koo, C.H., Lin Ng, J., Chaplot, B., Huang, Y.F., El-Shafie, A., & Ahmed, A.N. (2023). Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches. Alexandria Engineering Journal, 82, 16-25. https://doi.org/10.1016/j.aej.2023.09.060
Li, S., Xu, C., Su, M., Lu, W., Chen, Q., Huang, Q., & Teng Y.(2024). Downscaling of environmental indicators: A review. Science of The Total Environment, 916. https://doi.org/10.1016/j.scitotenv.2024.170251
Munandar, D., Ruchjana, B.N., & Abdullah, A.S. (2022). Principal component analysis-vector autoregressive integrated (PCA-VARI) model using data mining approach to climate data in the west java region. Jurnal Ilmu Matematika dan Terapan, 16(1), 099-112. https://doi.org/10.30598/barekengvol16iss1pp099-112
Najafi, M.R., Hamid, M., & Wherry, S.A. (2009). A procedure for statistical downscaling of precipitation with an objective method for predictor selection. Journal of Hydrologic Engineering. 16(8). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000355
Nurdin. (2011). Antisipasi perubahan iklim untuk keberlanjutan ketahanan pangan [Srikpsi]. Universitas Negeri Gorontalo. https://repository.ung.ac.id/karyailmiah/show/20/antisipasi-perubahan-iklim-untuk-keberlanjutan-ketahanan-pangan.html#
Pathan, M.S., Nag, A., & Dev, S. (2022, Juli 17-22). Efficient rainfall prediction using a dimensionality reduction method. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing [Symposium]. Kuala Lumpur, Malaysia. https://doi.org/10.1109/IGARSS46834.2022.9884849
Pour, S.H., shahid, S., Chung, E.S., & Wang, X.J. (2018). Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmospheric Research, 213, 149-163. https://doi.org/10.1016/j.atmosres.2018.06.006
Raymer, M.L., Punch, W.F., Goodman, E.D., Khun, L.A., & Jain, A.K. (2000). Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(2), 164-171. https://corescholar.libraries.wright.edu/knoesis/9
Robock, A., Turco, R.P., Harwell, M.A., Ackerman, T.P., Andressen,R., Chang,H.S., & Sivakumar,M.V.K. (1993). Use of general circulation model output in the creation of climate change scenarios for impact analysis. Climatic Change, 23, 293-335. https://link.springer.com/article/10.1007/BF01091621
Sachindra, D.A., Ahmed, K., Rashid, M.M., Shahid, S., & Perera, B.J.C (2018). Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240-248. https://doi.org/10.1016/j.atmosres.2018.05.022
Salathe, E. P., Jr., Mote, P. W., & Wiley, M. W. (2007). Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States pacific northwest. Int. J. Climatol, 27(12), 1611–1621. https://doi.org/10.1002/joc.1540
Siregar, A.M., Tukino, Faisal, S., Fauzi, A., & Kadori, I. (2020). Klasifikasi untuk prediksi cuaca menggunakan esemble learning. Jurnal Pengkajian dan Penerapan Teknik Informatika, 13, 138-147. DOI:https://doi.org/10.33322/petir.v13i2.998
Thara, D.K. Prema, P.S., & Xiong, F. (2019). Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques. Pattern Recognition Letters, 128, 544-550. https://doi.org/10.1016/j.patrec.2019.10.029
Vieira, V.M. (2012). Permutation tests to estimate significances on Principal Components Analysis. Computational Ecology and Software, 2, 103-123. http://www.iaees.org/publications/journals/ces/articles/2012-2(2)/permutation-tests-to-estimate-significances.pdf
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Ana Fauziah,Hermanto Hermanto,Mita Akbar Sukmarini

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal