Karakteristik Mortar Komposit Dengan Penambahan Arang Aktif
DOI:
https://doi.org/10.53863/kst.v7i01.1561Kata Kunci:
Arang Aktif, Semen, Kepadatan, Mekanik, Daya TahanAbstrak
Penambahan arang aktif ke dalam matriks semen dapat meningkatkan kepadatan mortar, dan daya tahan mortar. Tujuan dari penelitian ini adalah menganalisa pengaruh arang aktif terhadap karakteristik mortar komposit meliputi kuat tekan, densitas dan daya serap air. Pembuatan mortar komposit dengan komposisi arang aktif terhadap berat semen (1%, 2%, 3%, 4%, dan 5%), perbandingan semen dan pasir adalah 1:3. Komposisi tersebut akan diuji dan dianalisa pengaruhnya terhadap kuat tekan, densitas dan daya serap air mortar komposit. Hasil penelitian menunjukkan penambahan arang aktif tidak berpengaruh signifikan terhadap karakteristik mortar komposit, kecuali pada densitas setting. Penambahan arang aktif sebesar 5% menunjukkan komposisi optimal dengan nilai kuat tekan 11,67 MPa, densitas setting 2092,91 kg/m3, densitas oven dry 1853,93 kg/m3, dan daya serap air 15,20%.
Referensi
American Society for Testing and Materials. (2008). Standard specification for mortar for unit masonry (ASTM C270). Philadelphia, PA: ASTM International.
Alderete, N. M., Zaccardi, Y. A., & De Belie, N. (2020). Mechanism of long-term capillary water uptake in cementitious materials. Cement and Concrete Composites, 106, 103448. https://doi.org/10.1016/j.cemconcomp.2019.103448
Asadi, I., Shafigh, P., Hashemi, M., Akhiani, A. R., Maghfouri, M., Sajadi, B., Mahyuddin, N., Esfandiari, M., Talebi, H. R., & Metselaar, H. S. C. (2020). Thermophysical properties of sustainable cement mortar containing oil palm boiler clinker (OPBC) as a fine aggregate. Construction and Building Materials, 268, 121091. https://doi.org/10.1016/j.conbuildmat.2020.121091
Babar, A. A., Panhwar, I., Qureshi, S., Memon, S., & Siddiqui, Z. (2019). Utilization of biomass (rice straw) to produce activated charcoal through single stage pyrolysis process. Journal of International Environmental Application & Science, 14(1), 1–6.
Badan Standarisasi Nasional. (2002). Metode pengujian kekuatan tekan mortar semen portland untuk pekerjaan sipil (SNI 03-6825-2002). Jakarta: Badan Standarisasi Nasional.
Badan Standarisasi Nasional. (2002). Tata cara perhitungan struktur beton untuk bangunan gedung (Beta version) (SNI 03-2847-2002). Jakarta: Badan Standarisasi Nasional.
Benabed, B., Soualhi, H., Ase, B., Azzouz, L., Kadri, E., & Kenai, S. (2016). Effect of limestone powder as a partial replacement of crushed quarry sand on properties of self-compacting repair mortars. Journal of Building Materials and Structures, 3(1), 15–30. https://doi.org/10.34118/jbms.v3i1.21
Dagu, C. D., Yang, X., Yingkong, S., Paul, S. C., Susilawati, & Wong, L. S. (2020). Mechanical and thermal properties of lightweight concrete incorporated with activated carbon as coarse aggregate. Journal of Building Engineering, 31, 101347. https://doi.org/10.1016/j.jobe.2020.101347
Dzigita, N., Girskas, G., & Gintautas, S. U. (2017). Properties of concrete modified with mineral additives. Construction and Building Materials, 135, 37–42. https://doi.org/10.1016/j.conbuildmat.2016.12.215
Ehsani, A., Nili, M., & Shaabani, K. (2017). Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing fly ash. KSCE Journal of Civil Engineering, 21(5), 1–12. https://doi.org/10.1007/s12205-016-0853-2
Ersan, Y. C., Da Silva, F. B., Boon, N., Verstraete, W., & De Belie, N. (2015). Screening of bacteria and concrete compatible protection materials. Construction and Building Materials, 88, 196–203. https://doi.org/10.1016/j.conbuildmat.2015.04.027
Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Construction and Building Materials, 198, 479–493. https://doi.org/10.1016/j.conbuildmat.2018.11.197
Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: A review. Environmental Chemistry Letters, 20, 2853–2927. https://doi.org/10.1007/s10311-022-01468-z
Gu, L., Liu, T., Wu, K., Yang, Z., Wen, Z., Zhang, Z., & Li, H. (2022). Temperature-dependent water retention and bleeding of fresh cement-based materials with VEAs. Cement and Concrete Composites, 130. https://doi.org/10.1016/j.cemconcomp.2022.104539
Hatungimana, D., Taskopru, C., Ichedef, M., Sac, M. M., & Yazıcı, S. (2019). Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. Journal of Building Engineering, 23, 369–376. https://doi.org/10.1016/j.jobe.2019.01.011
Heidari, A., Hashembour, M., Javdanian, H., & Karimian, M. (2018). Investigation of mechanical properties of mortar with mixed recycled aggregates. Asian Journal of Civil Engineering, 19(5), 583–593. https://doi.org/10.1007/s42107-018-0044-1
Hendriko, A., Juwono, A. L., Budiman, I., Subyakto, Soegijono, B., Sadir, M., Sudarmanto, Purnomo, D., Narto, Akbar, F., Setyolisdianto, J. A., & Kristianto, M. A. (2023). Mechanical and thermal properties of non-structural adhesive mortar using linear low-density polyethylene (LLDPE) with vinyl acetate/ethylene (VAE) interface. Colloid and Polymer Science. https://doi.org/10.1007/s00396-023-05216-9
Huang, Q., & Zhao, L. (2019). Correlation between compressive strengths and water absorption of fly ash cement mortar immersed in water. Archives of Civil Engineering, 65(3), 141–152. https://doi.org/10.2478/ace-2019-0040
Huang, Q., Wang, C., Yang, C., Zhou, L., & Yin, J. (2015). Accelerated sulfate attack on mortars using electrical pulse. Construction and Building Materials, 95, 875–881. https://doi.org/10.2478/ace-2019-0040
Jung, C. T., Siang, T. C., Kwong, T. H., & Boon, K. H. (2019). Compressive strength and water absorption of mortar incorporating silica fume. International Journal of Civil Engineering (SSRG-IJCE), 6(8), 39–43. https://doi.org/10.14445/23488352/IJCE-V6I8P106
Khalil, M. Y., & Fawzy, A. A. (2020). Mechanical, microstructural and absorption properties of cement mortar containing different types of nano-clay. Construction and Building Materials, 248, 118656. https://doi.org/10.1016/j.conbuildmat.2020.118656
Luhar, S., & Luhar, I. (2022). Durability performance of self-compacting concrete incorporating fly ash and rice husk ash. Case Studies in Construction Materials, 17, e01304. https://doi.org/10.1016/j.cscm.2022.e01304
Machado, M. T. A., Mendes, M. T., Gois, M. R., & Silva, F. D. A. (2016). Evaluation of the properties of cement-based mortars with activated charcoal. Journal of Building Pathology and Rehabilitation, 1, 10. https://doi.org/10.1007/s41024-016-0012-6
Mahrous, B., Sorour, M., Abdelrahman, M., & Khater, H. (2022). Development of sustainable mortar using fly ash and steel slag. Case Studies in Construction Materials, 16, e01012. https://doi.org/10.1016/j.cscm.2022.e01012
Maslehuddin, M., & Shameem, M. (2012). Factors affecting durability of concrete. In Siddique, R. (Ed.), Green concrete: Properties and applications (pp. 155–174). Nova Science Publishers.
Miller, S. A., Horvath, A., & Monteiro, P. J. M. (2016). Readily implementable techniques can cut annual CO₂ emissions from the production of concrete by over 20%. Environmental Research Letters, 11(7), 074029. https://doi.org/10.1088/1748-9326/11/7/074029
Morsy, M. S., Alsayed, S. H., & Aqel, M. (2010). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 24(1), 1–8. https://doi.org/10.1016/j.conbuildmat.2009.08.044
Nasution, A. H., Manullang, O. H. H., & Ginting, T. A. (2020). Pemanfaatan karbon aktif dari tempurung kelapa sawit untuk penjernihan air sumur bor. Jurnal Teknik Kimia USU, 9(1), 1–7. https://doi.org/10.32734/jtk.v9i1.3638
Purbasari, H. K., Zainuri, M., & Rahmawati, F. (2017). Sintesis karbon aktif dari limbah biomassa tempurung kelapa sawit dengan aktivator H₃PO₄ dan aplikasi pada adsorpsi fenol. Jurnal Kimia Valensi, 3(2), 132–138. https://doi.org/10.15408/jkv.v3i2.6461
Putra, R. B., Santoso, D. A., & Yuliasih. (2020). Pengaruh variasi kadar karbon aktif terhadap kuat tekan mortar semen. Jurnal Reka Buana, 5(3), 143–147. https://doi.org/10.33366/rekabuana.v5i3.1792
Ramadhani, A. A., Maulana, T., & Gunawan, R. (2017). Pemanfaatan karbon aktif dari cangkang kelapa sawit sebagai adsorben logam berat Pb (timah hitam) pada limbah cair laboratorium. Jurnal Teknik Kimia USU, 6(2), 33–38. https://doi.org/10.32734/jtk.v6i2.4723
Sharma, R., & Bansal, P. (2016). Use of different types of nano silica in self-compacting concrete. Perspectives in Science, 8, 295–297. https://doi.org/10.1016/j.pisc.2016.04.059
Surya, A. B., & Effendy, H. (2019). Pengaruh karbon aktif dari limbah sekam padi terhadap kuat tekan beton. Jurnal Konstruksia, 11(2), 78–83. https://doi.org/10.22216/jk.v11i2.4083
Susanti, I., & Falah, M. (2021). Pengaruh karbon aktif dari kulit pisang terhadap sifat mekanik mortar semen. Jurnal Teknik Sipil dan Lingkungan, 7(2), 114–121. https://doi.org/10.12962/jtsl.v7i2.8729
Zhang, P., Gao, Y., & Xue, X. (2019). Effect of nano-clay on the mechanical properties and durability of cement-based materials. Construction and Building Materials, 211, 303–313. https://doi.org/10.1016/j.conbuildmat.2019.03.229
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Muhammad Sadir, Baiq Mirawati, I Gde Adi Suryawan Wangiyana, Albert Hendriko, Ade Irama, Zoya Saharani Hidayah, Yusron Hafiz

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal