Analisis Clustering Persepsi Santriwati Akhir KMI Terhadap Pengabdian UNIDA Reguler Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.53863/kst.v7i02.1866Keywords:
Clustering, CRISP-DM, K-Means, Perception, Community Service ProgramAbstract
This study aims to categorise and analyse the perceptions of female students graduating from Kulliyatul Mu'allimat al-Islamiyyah (KMI) towards the UNIDA Regular community service programme using the K-Means Clustering algorithm. The categorisation was conducted to determine the level of acceptance among female students in an objective, efficient, and transparent manner as a basis for evaluation and development of future community service programmes. The research method used the CRISP-DM framework, which includes the stages of data understanding, data preparation, modelling, evaluation, and deployment. Primary data was obtained from a five-point Likert scale questionnaire completed by 561 respondents. The analysis was carried out through data cleaning and normalisation, modelling with the K-Means algorithm, determining the optimal number of clusters using the Elbow Method, and validation with the Silhouette Score. The results showed that the optimal number of clusters was three, namely positive (25%), neutral (41%), and negative (34%). The positive cluster had high motivation and attitude, the neutral cluster showed moderate scores with weak social aspects, while the negative cluster was low in almost all variables, especially motivation and experience. The Silhouette Score value of 0.61 indicates that the clustering quality is good. This study proves that the application of K-Means Clustering is effective in mapping female students' perceptions systematically and accurately. The results provide practical input for UNIDA to strengthen motivation, social support, and coaching and mentoring strategies so that the community service programme is received more positively
References
Anggraini, F., Suprapta, I., Warno, W., Fahrezi, H., Muhammadiyah, U. S. (2025). Sistem Manajemen Kelas Menggunakan K-Means Clustering untuk Pengelompokan Kelas Unggulan pada Sekolah Dasar Negeri Neglasari. 7(02), 720–738.
Desi, E., Aliyah, S., Lestari, S., & Dari, W. (2022). Implementasi Algoritma K-Means Untuk Penerimaan Siswa Baru Di SMANPAS Berdasarkan Nilai Rapot dan Hasil Tes. It (Informatic Technique) Journal, 10(1) 1-10, https://doi.org/10.22303/it.10.1.2022.01-10
Diah Nilam Cahya, Muslim Hidayat, M. F. A. (2022). Journal of Engineering and Informatic Implementasi Algoritma K-Means Clustering untuk Menentukan Calon. 1(1), 28–34. https://doi.org/10.56854/jei.v1i1.16
Ihsan, N. H., & Fauziah, A. (2024). Pelajaran Nisaiyyah Di Pondok Modern Darussalam.Jurnal Pendidikan Islam,2(3), 370–376.
Kurniawan, H. P., & Farhatuaini, L. (2024). Identifikasi Pola Kepuasan Mahasiswa Terhadap Proses Pembelajaran Menggunakan Algoritma K-Means Clustering. Jurnal Informatika: Jurnal Pengembangan IT, 9(2), 164–172.
Nanda, A. P., Eko, D., & Pramono, H. (2020). Menentukan Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan. Jurnal Sistem Informasi Dan Telematika, 11(1), 23–28.
Nisa, A. H., Hasna, H., & Yarni, L. (2023). Persepsi. Jurnal Multidisiplin Ilmu, 2(4), 213–226. https://koloni.or.id/index.php/koloni/article/view/568/541
Oktarian, S., Defit, S., & Sumijan. (2020). Clustering Students’ Interest Determination in School Selection Using the K-Means Clustering Algorithm Method. Jurnal Informasi Dan Teknologi, 2(3), 68–75. https://doi.org/10.37034/jidt.v2i3.65
SHELEMO, A. A. (2023). Nilai-nilai Panca Jiwa Gontor Dalam Membentuk Karakter Santriwati Akhir. Nucl. Phys., 13(1), 104–116.
Yuma, F. M., Christy, T., & Tasril, V. (2023). Clusterisasi Tingkat Persepsi Mahasiswa Pada Mata Kuliah E-Bisnis. Journal of Science and Social Research, 6(3), 807–812. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cNhxF7gAAAAJ&pagesize=100&citation_for_view=cNhxF7gAAAAJ:hFOr9nPyWt4C
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Miftahuddin Fahmi, Dian Fikrianti, Kharisma Zalza Nurulita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal
















