Data Mining untuk Meningkatkan Efisiensi dan Prediksi Produk Garmen Menggunakan Algoritma K-Nearest Neighbor di PT Mas Silueta

Authors

  • Taufik Hidayat Universitas Selamat Sri, Kendal, Indonesia

DOI:

https://doi.org/10.53863/kst.v6i01.1085

Keywords:

Optimization, Garment, K-Nearest Neighbor

Abstract

Clothing is a basic human need, especially for women. MAS SILUETA PT is located at Wijaya III Monument Street, Randu Garut, District. Tugu, Semarang City and produces women's clothing and underwear such as Bra Cups, supportive trousers and shirts, with so many variations of this clothing, you can predict which ones are popular or not so that the production process is more productive. Based on the number of products sold, they will be grouped into two, namely achieving or products that are in demand and not achieving or less popular. So to find out what garment production has been achieved, a data calculation process is needed to solve the problems found using data mining. K-Nearest Neighbor (KNN) is a process in data mining for predictions so that the data obtained is accurate and efficient. And with the K-Nearest Neighbor method, you can carry out a data grouping process and then analyze the data group and produce predictions that can be used to analyze products based on data from a lot of underwear sales (big data) so that you can get useful new information. This research discusses garment production using 84 test data. And produces an accuracy of 87.50%.

References

Alfani W.P.R., A., Rozi, F., & Sukmana, F. (2021). Prediksi Penjualan Produk Unilever Menggunakan Metode K-Nearest Neighbor. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 6(1), 155–160. https://doi.org/10.29100/jipi.v6i1.1910

Farkhina Dwi Utari, Amril Mutoi Siregar, D. W. (2020). Implementasi Algoritme K-Nearest Neighboar ( KNN ) untuk Prediksi Hasil Produksi. Scientific Student Journal for Information, Technology and Science, 1(1), 21–25.

Kafil, M. (2019). Penerapan Metode K-Nearest Neighbors. Jurnal Mahasiswa Teknik Informatika (JATI), 3(2), 59–66.

Pohan, D. A., Dar, M. H., & Irmayanti. (2022). Penerapan Data Mining untuk Prediksi Penjualan Produk Sepatu Terlaris Menggunakan Metode Regresi Linier Sederhana. Jurnal Nasional Informatika Dan Teknologi Jaringan, 2, 2–6. https://doi.org/10.30743/infotekjar.v6i2.4795

Putri, A. A. (2021). Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-Nearest Neighbor ( Studi Kasus?: PT . Central Brastagi Utama ). 1(6), 354–361.

Samosir, H., Amin, M., & Harahap, I. R. (2021). Penerapan Data Mining untuk Klasifikasi Produk Merk Bata Menggunakan Algoritma K-Means. JUTSI (Jurnal Teknologi Dan Sistem Informasi), 1(2), 161–166. https://doi.org/10.33330/jutsi.v2i1.1163

Siregar, J. A. S., & Handoko, K. (2021). Jurnal Comasie Jurnal Comasie. Jurnal Comasie, 6(2), 40–51. http://ejournal.upbatam.ac.id/index.php/comasiejournal%0AJurnal Comasie ISSN (Online) 2715-6265%0APERANCANGAN

Sukmana, R. N., Abdurrahman, & Wicaksono, Y. (2020). Implementasi K-Nearest Neighbor Untuk Menentukan Prediksi Penjualan (Studi Kasus?: PT Maksiplus Utama Indonesia). Jurnal Teknologi Informasi Dan Komunikasi Vol. 8 No. 2, Desember 2020, 8(2), 31–38.

Yolanda, I., & Fahmi, H. (2021). Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT . Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor. 3(3), 9–15.

Yusuf, W., Witri, R., & Juliane, C. (2022). Model Prediksi Penjualan Jenis Produk Tekstil Menggunakan Algoritma K-Nearest Neighbor (KNN). IJCIT (Indonesian Journal on Computer and Information Technology), 7(1), 1–6. https://doi.org/10.31294/ijcit.v7i1.11973

Published

2024-02-19

How to Cite

Hidayat, T. (2024). Data Mining untuk Meningkatkan Efisiensi dan Prediksi Produk Garmen Menggunakan Algoritma K-Nearest Neighbor di PT Mas Silueta. JURNAL KRIDATAMA SAINS DAN TEKNOLOGI, 6(01), 160–173. https://doi.org/10.53863/kst.v6i01.1085