Analisis Sentimen Komentar SIAKAD Menggunakan Metode Naive Bayes Classifier
DOI:
https://doi.org/10.53863/kst.v5i02.933Keywords:
Navie Bayes Classifier, SIAKADAbstract
In all industries, information and communication technology is expanding very quickly. All administrative tasks have ramifications that genuinely call for technology. When the innovation successfully mixes technology with information, the position of this technology becomes increasingly significant. Information technology has permeated so deeply into even the most insignificant aspects of human life, such as the use of academic information systems (SIAKAD) in raising the caliber of academic services, that there are many users who use it in their daily lives who have witnessed an acceleration of change that was previously unimaginable. Public sentiment was categorized and then used to conduct the analysis. The Navie Bayes Classifier is the main technique applied in this study. To assess the degree of accuracy, a comparison will be made using this approach. Positive and negative emotions are classified as sentiments. The purpose of this study is to tell the public about SIAKAD by utilizing student feedback and understanding the degree of accuracy of the techniques examined for method comparison. The test results will undergo method testing and accuracy testing using the Rapidminer tool.Keywords: Navie Bayes Classifier, SIAKAD
References
Amalia, C., & Sibaroni, Y. (2020). Analisis sentimen data tweet menggunakan model jaringan saraf tiruan dengan pembobotan delta tf-idf. EProceedings of Engineering, 7(2).
Amanda, U. R., & Utomo, D. P. (2021). Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 5(1).
Chersoni, E. (2021). Manfred Stede and Jodi Schneider: Argumentation mining. Synthesis lectures on human language technologies, edited by Graeme Hirst: Morgan & Claypool Publishers, December 2018, 191 pages. Springer.
Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. Jurnal Khatulistiwa Informatika, 6(1).
Fajri, M. S., Septian, N., & Sanjaya, E. (2020). Evaluasi Implementasi Algoritma Machine Learning K-Nearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah. Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, 3(1), 9–14. https://garuda.kemdikbud.go.id/documents/detail/1770695
Hidayatullah, A. F., & Azhari, A. S. N. (2015). Analisis sentimen dan klasifikasi kategori terhadap tokoh publik pada twitter. Seminar Nasional Informatika (SEMNASIF), 1(1).
Indini, D. P., Siburian, S. R., Nurhasanah, N., & Utomo, D. P. (2022). Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan. Prosiding Seminar Nasional Sosial, Humaniora, Dan Teknologi, 325–331.
Kim, S.-B., Han, K.-S., Rim, H.-C., & Myaeng, S. H. (2006). Some effective techniques for naive bayes text classification. IEEE Transactions on Knowledge and Data Engineering, 18(11), 1457–1466.
Liu, B. (2022). Sentiment analysis and opinion mining. Springer Nature.
Mara, A. T., Sediyono, E., & Purnomo, H. (2021). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba. JOINTER: Journal of Informatics Engineering, 2(01), 24–31.
Mentari, N. D., Fauzi, M. A., & Muflikhah, L. (2018). Analisis Sentimen Kurikulum 2013 Pada Sosial Media Twitter Menggunakan Metode K-Nearest Neighbor dan Feature Selection Query Expansion Ranking. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2739–2743.
Mustafa, M. S., Ramadhan, M. R., & Thenata, A. P. (2018). Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Creative Information Technology Journal, 4(2), 151–162.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135.
Pudjajana, A. M., & Manongga, D. (2018). Sentimen Analisis Tweet Pornografi Kaum Homoseksual Indonesia Di Twitter Dengan Naive Bayes. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 313–318.
Ridwan, M., Suyono, H., & Sarosa, M. (2013). Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), 7(1), 59–64.
Salam, A., Zeniarja, J., & Khasanah, R. S. U. (2018). Analisis Sentimen Data Komentar Sosial Media Facebook Dengan k-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekspress Indonesia).
Saputra, H. K. (2018). Analisis Data Mining Untuk Pemetaan Mahasiswa Yang Membutuhkan Bimbingan dan Konseling Menggunakan Algoritma Naïve Bayes Classifier. Jurnal Teknologi Informasi Dan Pendidikan, 11(1), 14–26.
Sari, R. (2020). Analisis sentimen pada review objek wisata dunia fantasi menggunakan algoritma K-Nearest Neighbor (k-nn). EVOLUSI: Jurnal Sains Dan Manajemen, 8(1).
Telaumbanua, F., Purba, J. M., & Utomo, D. P. (2021). Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5. 0 Algorithm. The IJICS (International Journal of Informatics and Computer Science), 5(2), 118–122.
Wilianto, L., Pudjiantoro, T. H., & Umbara, F. R. (2017). Analisis Sentimen Terhadap Tempat Wisata Dari Komentar Pengunjung Dengan Menggunakan Metode Naive Bayes Classifier Studi Kasus Jawa Barat. Prosiding SNATIF, 439–448.
Winarko, E. (2017). Sentimen analisis tweet berbahasa Indonesia dengan deep belief network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(2), 187–198.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dualu Lado Kaka,Gergorius Kopong Pati,Karolus Wulla Rato
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal