Sistem Manajemen Kelas Menggunakan K-Means Clustering untuk Pengelompokan Kelas Unggulan pada Sekolah Dasar Negeri Neglasari 3

Authors

  • Fitri Anggraini Universitas Saintek Muhammadiyah, DKI Jakarta, Indonesia
  • Imam Suprapta Universitas Saintek Muhammadiyah, DKI Jakarta, Indonesia
  • Warno Warno Universitas Saintek Muhammadiyah, DKI Jakarta, Indonesia
  • Hafid Fahrezi Universitas Saintek Muhammadiyah, DKI Jakarta, Indonesia

DOI:

https://doi.org/10.53863/kst.v7i02.1841

Keywords:

System, Management, K-Means clustering, Student Grouping, Elite Class

Abstract

This study aims to develop and analyze a classroom management system using K-Means Clustering at SD Negeri Neglasari 3. The system is designed to group outstanding classes objectively, efficiently, and transparently based on students' academic achievements. The system is designed to streamline the data processing of students in the grouping of elite classes, which currently still relies on manual processes. The system development method used is the waterfall method, consisting of the following stages: Requirement Analysis, Design, Implementation, Testing, and Maintenance. The system is built using the Hypertext Preprocessor (PHP) programming language and the MySQL database. To test the developed system, several methods were used, including black-box testing, User Acceptance Test (UAT), time comparison tests (pre-test and post-test), and the distribution of satisfaction questionnaires to 10 teachers as respondents. The research results showed that black-box testing and User Acceptance Test validation were 100% successful. Additionally, the developed system demonstrated a significant improvement in task completion time efficiency for class grouping, increasing by 80.63% compared to manual methods. The questionnaire responses yielded a score of 4.49 out of 5. Thus, the research findings confirm that the developed system is a valid solution for objectively and efficiently grouping elite classes

References

Azzahra, L., & Amru Yasir. (2024). Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food. Jurnal Ilmu Komputer Dan Sistem Informasi, 3(1), 1–10. https://doi.org/10.70340/jirsi.v3i1.88

Dacwanda, D. O., & Nataliani, Y. (2021). Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan. Aiti, 18(2), 125–138. https://doi.org/10.24246/aiti.v18i2.125-138

Darmansah, Chairuddin, I., & Asa, R. S. (2021). Analisis Penyebaran Penularan Virus Covid-19 di Provinsi Jawa Barat Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1188–1199. https://doi.org/10.35957/jatisi.v8i3.1034

Darmansah, D. D., & Wardani, N. W. (2021). Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(1), 105–117. https://doi.org/10.35957/jatisi.v8i1.590

Hutagalung, J., Syahputra, Y. H., & Tanjung, Z. P. (2022). Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(1), 606–620. https://doi.org/10.35957/jatisi.v9i1.1516

Kayati, S., Junadhi, Yenni, H., & Asnal, H. (2022). Penerapan Metode Multi Attribute Utility Theory (MAUT) Pada Sistem Pendukung Keputusan dalam Menentukan Kelas Unggulan di SMKN 1 Mandau. Teknologi, 12(2), 39–46. https://doi.org/10.26594/teknologi.v12i2.3282

Muningsih, E., Nur, H. M., Dwi Imaniawan, F. F., Saifudin, Handayani, V. R., & Endiarto, F. (2020). Comparative Analysis on Dimension Reduction Algorithm of Principal Component Analysis and Singular Value Decomposition for Clustering. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012101

Murphy, R., & Weinhardt, F. (2020). Top of the Class: The Importance of Ordinal Rank. Review of Economic Studies, 87(6), 2777–2826. https://doi.org/10.1093/restud/rdaa020

Novi, & Mubarok, A. (2021). Penerapan Algoritma K-Means Untuk Menentukan Kelas. INFOMATEK, 23(2), 97–106. https://doi.org/10.23969/infomatek.v23i2.4351

Noviyanto. (2020). Penerapan Data Mining Dalam Mengelompokkan. Paradigma – Jurnal Informatika Dan Komputer, 8(3). https://sulsel.bps.go.id/searchengine/result.html.

Nurdiansyah, D., & Rafdhi, F. (2022). Analisa Dan Perancangan Aplikasi E-Learning Stmik Muhammadiyah Jakarta. Jurnal Teknik Informatika Kaputama (JTIK), 6(2).

Satria, C., & Anggrawan, A. (2021). Aplikasi K-Means berbasis Web untuk Klasifikasi Kelas Unggulan. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 111–124. https://doi.org/10.30812/matrik.v21i1.1473

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796

Sulistiyawati, A., & Supriyanto, E. (2021). Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan. Jurnal Tekno Kompak, 15(2), 25. https://doi.org/10.33365/jtk.v15i2.1162

Wulandari, F. T., Jayanti, A. D., & Setiawati, D. (2023). Sistem Pendukung Keputusan Pemilihan Siswa Kelas Unggulan Berbasis Web Dengan Metode Topsis. Prosiding Sains Nasional Dan Teknologi, 13(1), 219–232. https://doi.org/10.36499/psnst.v13i1.9543

Yudistira, A., & Andika, R. (2023). Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28. https://doi.org/10.58602/jaiti.v1i1.22

Published

2025-09-09

How to Cite

Anggraini, F., Suprapta, I., Warno, W., & Fahrezi, H. (2025). Sistem Manajemen Kelas Menggunakan K-Means Clustering untuk Pengelompokan Kelas Unggulan pada Sekolah Dasar Negeri Neglasari 3. Jurnal Kridatama Sains Dan Teknologi, 7(02), 720–738. https://doi.org/10.53863/kst.v7i02.1841

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.